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A macroscopic equation of mass conservation is obtained by ensemble-averaging the 
basic conservation laws in a porous medium. In the long-time limit this ‘macro- 
transport’ equation takes the form of a macroscopic Fick’s law with a constant 
effective diffusivity tensor. An asymptotic analysis in low volume fraction of the 
effective diffusivity in a bed of fixed spheres is carried out for all values of the PBclet 
number P = Ua/D,, where Uis the average velocity through the bed, a is the particle 
radius and D, is the molecular diffusivity of the solute in the fluid. Several physical 
mechanisms causing dispersion are revealed by this analysis. The stochastic velocity 
fluctuations induced in the fluid by the randomly positioned bed particles give rise 
to a convectively driven contribution to dispersion. A t  high PBclet numbers, this 
convective dispersion mechanism is purely mechanical, and the resulting effective 
diffusivities are independent of molecular diffusion and grow linearly with P. The 
region of zero velocity in and near the bed particles gives rise to non-mechanical 
dispersion mechanisms that dominate the longitudinal diffusivity at very high PBclet 
numbers. One such mechanism involves the retention of the diffusing species in 
permeable particles, from which it can escape only by molecular diffusion, leading 
to a diffusion coefficient that grows aa P2. Even if the bed particles are impermeable, 
non-mechanical contributions that grow as P l n P  and P2 at high P arise from a 
diffusive boundary layer near the solid surfaces and from regions of closed streamlines 
respectively. The results for the longitudinal and transverse effective diffusivities as 
functions of the PBclet number are summarized in tabular form in $6. Because the 
same physical mechanisms promote dispersion in dilute and dense fixed beds, the 
predicted PBclet-number dependences of the effective diffusivities are applicable to 
all porous media. The theoretical predictions are compared with experiments in 
densely packed beds of impermeable particles, and the agreement is shown to be 
remarkably good. 

1. Introduction 
Transport processes in fixed beds and porous media are subjects of considerable 

practical importance. Fixed beds are encountered both in engineering practice, where 
packed beds are used as reactors and contacting devices, and in nature in the form 
of porous rock and soil. The ‘ microscopic ’ transfer of heat and mass in each phase 
(solid and fluid) of these materials may often be described by Fourier’s and Fick’s 
laws. The primary interest, however, is not the detailed microscopic processes, but 
rat.her the ‘macrotransport’, i.e. transfer on a lengthscale larger than that of the 
detailed microstructure of the porous medium. Previous work on macrotransport in 
the absence of convection has focused primarily on the heat-transfer problem, while 
work in the presence of convection has dealt with mass transfer. As a matter of 
convenience, we shall speak principally in terms of the mass-transfer problem ; the 
heat-transfer results may be obtained by analogy, as we show in $2. 
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In  the absence of convection in an isotropic medium the effective thermal 
conductivity is a scalar which depends on the molecular thermal conductivities in 
the fluid and particulate phases, as well as on the distribution of the included particles 
(Batchelor 1974). Maxwell (1873) determined the first effect of spherical inclusions 
of different conductivity on the effective conductivity in a dilute, stagnant suspension. 
Jeffrey (1973) extended these results by calculating the effect of particle interactions 
on the conductivity for randomly distributed particles. 

Although only strictly valid in the limit of low particle volume fraction, the results 
of Maxwell and Jeffrey provide a good estimate of the effective conductivity of more 
concentrated systems unless the particles are nearly close-packed or the conductivity 
of the particles is large compared with that of the continuous phase. The effective 
conductivity of very densely packed suspensions may be estimated by studying 
periodic arrays of particles (see e.g. Sangani t Acrivos 1983). The case in which the 
conductivity of the particles greatly exceeds that of the continuous phase is 
particularly important, because the effective conductivity may be significantly larger 
than the conductivity of the continuous phase. Batchelor t O'Brien (1977) addressed 
this case through an asymptotic analysis for k,/k, 9 1 and q5/q5max- 1 < 1, where q5 
is the volume fraction of the included particles, q5max is the volume fraction at closest 
packing, and k, and k, are the respective thermal conductivities of the particulate 
and continuous phases. Thus, good estimates of the effective conductivity may be 
obtained at  all values of the volume fraction. All of these studies, however, are valid 
only in the absence of convection. 

Brenner (1980) developed a general theory for determining the transport properties 
in spatially periodic porous media in the presence of convection, and showed that 
in the limit of long times the dispersion of a tracer particle is diffusive, i.e. the 
mean-square displacement grows linearly with time. Carbonell t Whitaker (1983) 
presented a volume-average approach for calculating the effective diffusivity , and 
carried out specific calculations for a two-dimensional spatially periodic porous 
medium (Eidsath et al. 1983). The longitudinal diffusivities (describing dispersion in 
the direction of the bulk flow) Calculated numerically by Eidsath et al. are in 
reason ble agreement with the experiments of Gunn & Pryce (1969) for a periodic 

of the blationship between Taylor dispersion and dispersion in spatially periodic 
porous, media (Brenner 1980) suggest a stronger Pe dependence of the longitudinal 
diffusivity on the PBclet number than the Pl-' dependence found by Eidsath et al. 
Here the PBclet number is defined as P = Ua/D,, where U is the average velocity 
through the bed, a is a characteristic size of the particles or grains in the porous 
medium and D, is the molecular diffusivity of the tracer in the fluid. 

The overwhelming body of experimental data on dispersion in packed beds and 
porous media (Fried t Cornbarnous 1971) that are not spatially periodic shows, 
however, that both the longitudinal and transverse effective diffusivities grow 
approximately as P at high PBclet number. The longitudinal diffusivities calculated 
by Eidsath et al. for periodic media show a PBclet-number dependence that is too 
strong, while their transverse diffusivities are much lower and have a weaker 
PBclet-number dependence than experiment. Thus, while there is good agreement 
between theory and experiment for spatially periodic porous media, the theory of 
dispersion in such media does not correctly model the PBclet-number dependence of 
the effective diffusivity in the 'random' media that are commonly encountered in 
practice. 

cubic array t of spheres. It should be noted, however, that theoretical considerations 
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These observations suggest a fundamental difference between the mechanisms for 
dispersion in periodic and random porous media. In  dimensional terms the experi- 
mentally observed diffusivities at high PBclet numbers in random media are roughly 
proportional to Uu and independent of the molecular diffusivity D,. This suggests 
that at high P in a random medium the dispersion mechanism depends only on the 
stochastic velocity field in the medium and does not involve molecular diffusion; a 
phenomenon known as mechanical dispersion. In contrast, the random element 
introduced by molecular diffusion is required in the theory of dispersion in periodic 
porous media (at least for flow parallel to a line contained in a plane of symmetry) 
in order that a tracer particle should sample all points in the unit cell and in order 
that the dispersion be diffusive. The stochastic element in the distribution of pores 
or of particles in a random porous medium introduces an alternative mechanism by 
which a tracer may sample all positions with respect to the bed microstructure. 

Note, however, that it is not necessarily true that an arbitrary stochastic velocity 
field leads to mechanical dispersion, i.e. a true diffusive behaviour independent of 
molecular diffusion. Kesten & Papanicolaou (1979) have demonstrated that mecha- 
nical dispersion is obtained for any incompressible velocity field in the limit as the 
magnitude of the fluctuating portion of the velocity becomes small compared with 
its average. We shall see, however, that, if a stochastic velocity field contains regions 
of zero velocity or regions of closed streamlines, there is no purely hydrodynamic 
mechanism by which a tracer injected into these regions can reach the rest of the 
microstructural space, and the dispersion depends on molecular diffusion even in the 
limit of high PBclet number. An example of such behaviour is the ‘holdup’ dispersion 
examined in $5. 

Saffman (1959) modelled the microstructure of a porous medium as a network of 
capillary tubes of random orientation. At  high PBclet number and at very long time, 
Saffman found that the dispersion never becomes truly mechanical, the effective 
diffusivity growing as P In P. The logarithmic dependence results from the zero 
velocity of the fluid at the capillary walls. The time required for a tracer particle to 
leave a capillary would become infinite as its distance from the walls goes to zero, if 
molecular diffusion did not allow the tracer to escape the region of low velocity near 
the wall. This phenomenon is similar to the ‘holdup’ dispersion mentioned above, 
although in this case there is no finite region of zero velocity. 

A capillary network may provide a reasonable model for consolidated porous 
media - media in which the solid phase is continuous. In  this paper we model the 
microstructure of the porous medium as a bed of fixed particles - an unconsolidated 
medium in which the solid phase is discrete. Unconsolidated media are common in 
the form of packed beds and sandstone formations, and this model provides an 
alternate approach to the study of dispersion. 

Our interest is in heat and mass transfer through a bed of particles whose positions 
are held fixed at randomly distributed points in the bed, when the average velocity 
U through the bed is constant. We shall approach the problem through an asymptotic 
analysis, determining the leading effect of the particles at low particle volume fraction 
(or, equivalently, at high permeability) on the diapersive behaviour of the bed for 
all values of the PBclet number. It will be seen that this particle-induced dispersion 
is truly diffusive, i.e. the effective diffusivity defined as the ratio of the ensemble- 
average mass flux to the average concentration gradient is a time- and space- 
independent constant in the limit of long times for slowly varying average con- 
centration fields. The asymptotic analysis will enable us to elucidate the fundamental 
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physical mechanisms causing dispersion and to  predict the dependence of the 
diffusivity on the PBclet number even in porous media that do not satisfy the 
low-volume-fraction restriction. 

I n  $2 we present the microscopic transport equations and the averaging procedure 
used to derive the macrotransport equations and the definition of the effective 
diffusivity. I n  $ 3  we obtain the first effect of the velocity disturbance induced by the 
particles on mass transfer at low PBclet number P based on the particle radius. We 
shall see that the use of the Stokes velocity disturbance for flow past an isolated sphere 
leads to  a non-convergent expression for the effectivo diffusivity. This difficulty is 
overcome when the momentum-conservation equation is renormalized to obtain 
Brinkman’s equation for viscous flow through a porous medium. In a dilute, highly 
permeable bed the Brinkman velocity disturbance is the same as the Stokes velocity 
disturbance near the particle, but i t  becomes screened at a large distance k: = O($-:a) 
known as the Brinkman screening length, where k is the permeability and 6 is the 
solid’s volume fraction. This screening phenomenon enables us to formulate a 
convergent one-particle convection-diffusion problem. The observation that each 
particle’s contribution to macrotransport extends over a large O(ki)  volume leads to 
several important simplifications in the analysis, including the use of a point-particle 
approximation. It will be seen that the PBclet number 8 = Uki/D,  based on the 
Brinkman screening length k: is the appropriate parameter for determining whether 
convection or conduction (molecular diffusion) is dominant in the O(ki) volume that 
contributes to the effective diffusivity. In  $4 we examine the purely mechanical 
dispersion that occurs at high 8, developing a dispersion mechanism based on the 
stochastic velocity field alone and obtaining a contribution to the diffusivity that 
grows like P. 

This purely mechanical analysis breaks down, however, in the region of zero 
velocity inside the particles, giving rise to ‘holdup ’ dispersion, which does depend 
on molecular diffusion even in the limit of high PBclet numbers. Although holdup 
dispersion occurs only in the volume within the particles, it is important a t  high 
P6clet numbers because of its strong P2 dependence. If the fixed particles are 
impermeable to the tracer, this holdup dispersion contribution is absent. However, 
even for such impermeable particles there is an O(6P In P )  non-mechanical dispersion 
contribution, similar to that obtained by Saffman, arising from the zero fluid velocity 
at the particle surfaces. These non-mechanical holdup dispersion results are derived 
in $5. 

The results of the asymptotic analysis are summarized in tabular form in $6 and 
are compared with the available experimental data for transverse and longitudinal 
diffusion in beds of impermeable particles. The agreement with experiment is shown 
to be excellent. 

2. Macrotransport equations 
We are interested in mass transfer through a monodisperse, random bed of fixed 

spheres of radii a in the presence of a bulk convective motion. The particle Reynolds 
number is assumed small so that the inertial terms in the momentum conservation 
equation may be neglected, and the concentration of the diffusing species or solute 
is assumed sufficiently small so that Fick’s law describes the conservation of mass. 
The equations of motion for the steady velocity u and pressure p fields are the 
well-known Stokes equations 

v - u  = 0, - v p + p v 2 u  = 0, (2.1 a, 6 )  
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where ,u is the fluid viscosity. Equations (2.1 a, b) are valid for any point lying in the 
fluid, while within the fixed particles 

u = 0, (2 . lc )  

and the pressure is indeterminate. The no-slip condition requires the fluid velocity 
to be zero on the particle surfaces. The average or bulk velocity through the bed will 
be denoted by U (or (u),), and is equal to the volume flux per unit cross-sectional 
area of the bed. In the engineering literature the flow rate through a bed is usually 
given in terms of the superficial velocity - the average velocity per unit area of the 
fluid part of the bed, but our definition of U simplifies the analysis. 

The solute concentration field c(x, t )  satisfies 

ac 
-+v-q at = 0, 

with the mass flux q given by 

q = uc- D,Vc in the fluid, 

and by q = - D, Vc in the particles. 

On the particle surfaces the continuity of flux and sohbility conditions are 

(2.2a) 

(2.2b) 

(2.2c) 

Here m is the ratio of the solubilities of the solute in the fluid and in the particles, 
Dp is the molecular diffusivity of the solute in the particles, and n is the outward 
(into the fluid) normal to the particle surfaces. The time dependence must be retained 
in the mass-conservation equation even though we seek only the long-time behaviour 
of the effective diffusivity, because the bulk convective motion requires that a 
concentration field that varies linearly with the spatial coordinate parallel to the 
direction of flow also vary linearly with time. Although we have formulated the 
problem in terms of mass transfer, the effective thermal diffusivity, defined as the 
ratio of the heat flux to the gradient in enthalpy, is obtained if the ratio of solubilities 
is replaced by the ratio of the volumetric heat capacities in the fluid and in the 
particles, the concentration is replaced with the enthalpy, and the mass diffusivity 
is replaced with the thermal diffusivity. (The thermal conductivity is simply the 
product of the thermal diffusivity and the volumetric heat capacity.) 

We wish to determine the relationship between the average mass flux and average 
concentration gradient in a fixed bed in the presence of a constant average velocity 
field. We shall define these averages by averaging over an ensemble of realizations 
of the bed, each realization having a different configuration of particles, but with the 
same statistics of their relative positions. Such an average will be denoted by ( ), 
and be called an unconditional or bulk average, or simply the average. Thus the 
averaged mass-conservation equation is 

(2.3a) 

with the bulk average of the mass flux (q (x , t ) ) ,  a t  any point x within the bed at  
time t given by 

<q(x,  t ) ) ,  = <u>, (c), - <o>, v<c>, + <u’c’>, - <D’ VC’),, (2.3b) 

where u‘ = u-(u), ,  c‘ = c-(c) 0 , D’ = D - ( D )  ,, and D ( x )  is a generalized function 
which takes on the value D, when x lies in the fluid and D ,  when x lies in a particle. 



404 D.  L.  Koch and J .  F.  Brady 

The non-convective terms in (2.3) can be written in a form in keeping with previous 
work (Jeffrey 1973 ; Acrivos, Hinch & Jeffrey 1980) by making use of the conditional 
ensemble average ((x, t I rl))l. This is an ensemble average at the point x at time t 
conditioned on the presence of a particle centred at rl. Thus, using the analogy 
between heat and mass transfer, we can write 

- ( D ) ,  V(C(X, t ) ) ,  - ( ( D  - < m a )  V(C - <c>, (x, t ) ) ) o  

= -Dfv(C),-Df(a-l) J; dr1 PVl) V(C(X, t I r1))1. (2.4) 
x-rlI < a  

In (2.4) a = D,/mD,, P(rl)  is the probability density for finding a particle at  rl ,  which 
we shall take to be uniform P(r,) = q5/?puS, and the integral is over the volume of 
the particle centred at  rl. The use of D, in place of (D), in (2.3) allows the integral 
in (2.4) to be over the particle volume only, for (D-DD,) V(c-(c),) is non-zero only 
within the particles. 

In order to obtain a macroscopic law of mass transfer, we must express the bulk 
mass flux purely in terms of macroscopic variables. Because the detailed mass flux 
q is a linear function of the detailed concentration field c and the ensemble average 
is a linear operation, the average mass flux is in general a linear functional of the 
average concentration, which we shall write in the form 

<q), = (1 + y )  (u>,<c)o- D*V<C>,. (2.5) 

Here y is a constant and D is in general a tensorial operator, reflecting, among other 
factors, that dispersion in the direction of the bulk flow is different from that in the 
transverse direction. 

If we are to interpret the operator D as an effective diffusivity in the usual sense, 
we should require that it be a constant tensor independent of time and position, and 
independent of the bulk concentration field. We shall see that these conditions are 
satisfied in a homogeneous bed in the limit of long time, if the bulk concentration 
field varies slowly with position. In  a future paper we shall consider mass transfer 
when the bulk concentration does not vary slowly in time and space, a case in which 
non-local effects are expected. 

The effect y(u) ,  (c), of the particles on the convective term may be isolated by 
considering a bed with no bulk concentration gradient. Under these circumstances, 
one might expect that the disturbance concentration would be zero throughout the 
bed. The equilibrium condition (2.2e) at the particle surfaces, however, gives rise to 
concentration disturbances in the particles (c),- (c), and in the fluid (c),- (c),. 
Here (c), and (c), are the average concentrations in the particulate and fluid phases 
respectively, and are given by 

(2.6a, b)  

Since the concentrations are constant within each phase, we may write 

(u’c’)o = $(u‘>, (0, + (1 - 9) (u’),  (0, 9 

where the velocity disturbance within the fixed-particle phase is (u‘), = - (u),, while 
in the fluid phase (u’ ) ,  = ~ ( u ) , / ( l - $ ) .  Hence y is given by 

( 2 . 6 ~ )  
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This correction to the convective mass flux is equivalent to replacing the concentration 
averaged over the bed with the average concentration in the fluid, and replacing the 
bed average velocity with the superficial velocity, reflecting the fact that the velocity 
is non-zero only within the fluid. 

Equation (2.5) serves as the definition of the diffusivity operator D. Comparing (2.5) 
with (2.3 b)  and (2.4), the effective diffusivity may be written as the sum of three terms, 
each reflecting a different physical phenomenon : 

D = D"+D"+D*, (2.7a) 

where Dm = D,I (2.7b) 

is the molecular diffusivity of the fluid, I is the isotropic tensor, 

D"*V(c), E D,(a- 1)  J, dr, PPl) V<C(X, t I rlDl 

is the particles' contributions from the difference in diffusivities, and 

( 2 . 7 ~ )  
x - r l  I < a 

- D**V(c), = (U'C'),-Y(U)~ (c), (2.7d) 

is the particles' contribution from the nonlinear convection term. Equation (2.7 a) 
is just an identity resulting from the way in which we defined the effective diffusivity 
in (2.5). 

In the long-time limit considered here, we expect a true diffusive behaviour. Thus, 
we postulate subject to confirmation that D is a constant, so that (2.3a) and (2.5) 
have a solution of the form 

(c(x, W o  = V(C),.X-V(C),'(U),(l + y)  t ,  (2.8) 

where V(c), is a constant vector. The time-dependence in (2.8) is necessitated by 
the presence of the bulk convective term (1  + y) (u), (c), in (2.5). Although the 
bulk concentration field is time-dependent, it is significant that the gradient 
V(c), = V(c(x, t ) ) ,  is independent of both time and space. 

3. Dispersion at low Peclet numbers 
3.1. Pure conduction 

Even in the absence of convection, u = 0, the particles affect the macrotransport 
through the term D" involving the difference in the molecular diffusivities D,  and 
D, of the solute in the fluid and in the particles respectively. In order to evaluate 
( 2 . 7 ~ )  for D", we require an equation for the conditionally averaged concentration 
field (c(x, t I rl))l. This equation, obtained by conditionally averaging the detailed 
mass-conservation equation, is 

P<*);v<c),-v2<c), 
at 

(3.lb) 
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for the points, 1 x- rl 1 < 1, inside the particle. Here, and in all subsequent expressions, 
all lengths have been made dimensionless with the particle radius a ,  the velocity with 
the bulk average U ,  and the time with the diffusive timescale a 2 / D f .  In addition to 
satisfying the boundary conditions (2.2d, e )  at the surface of the fixed particle, the 
conditionally averaged field must sum to the bulk as I X- r1 I + CO, i.e. 

( 3 . 1 ~ )  (c(x, t I tl)), - (c(x, t ) ) ,  as I x - r ,  I + 03. 

In  the absence of convection (3 . la)  reduces to  

(3.2) ~- V 2 ( c ) ,  = (a- 1)  I dr, P(r,  I r l )  V ( c ( x ,  t I r,, r,)),.  
at Ix-rtl  d 1 

The leading behaviour of D” may be evaluated by neglecting the right-hand side of 
(3.2) to give the one-sphere pure-conduction problem solved by Maxwell. Substituting 
the resultant conditionally averaged concentration into (2.7 c )  gives the classic result 

Note that here and throughout the rest of the paper the effective diffusivity is 
non-dimensionalized with the molecular diffusivity in the fluid D,. The O ( @ )  
correction to (3.3) was evaluated by Jeffrey (1973) by including the two-particle 
interactions on the right-hand side of (3.2). 

3.2. The first effects of convection 

I n  this subsection we seek the first effects at low q5 and low P of convection on 
macrotransport in a fixed bed. The detailed justification of the approximations made 
in this asymptotic analysis will be presented in the Appendix. Although the velocity 
disturbance affects the concentration within the particle and thus makes an indirect 
contribution to D”, the leading effect of convection on the diffusivity is through D*. 
Using the definition of the conditional average, this contribution (2.7d) can be written 
in the dimensional form 

- D**V(c) ,  = -y (u) ,  ( c ) ,  +s dr, P(r,)  ( U ’ C ’ ) ~ ,  (3.4) 

where the integral is over all rl space. Neglecting two-particle velocity-concentration 
correlations, (3.4) may be approximated as 

-D**V<c) ,  = P dr,P(r,)<u’),(c’),-P s Ix-r, I < 1 

(3.5) 

where (u’),  = ( u ) ,  - (u) ,  and ( c ’ ) ,  = ( c ) ,  - ( c ) ,  are the disturbances to the velocity 
and concentration fields caused by the fixed particle. We shall see that at low P the 
particles cause only a small enhancement of diffusion, and as a result the effect of the 
other particles on any particle’s concentration disturbance is small and the right-hand 
side of ( 3 . 1 ~ )  may be neglected. 

We shall now see, however, that i t  isnecessary to consider many-body hydrodynamic 
interactions even in a dilute (low-$) bed. To demonstrate this fact, we first adopt the 
contrary assumption that the leading effect of convection on the effective diffusivity 
may be derived from a problem involving a single, isolated particle; a problem similar 
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to that solved by Maxwell to determine the conductivity in the absence of convection. 
The velocity disturbance caused by a single isolated sphere held fixed in an 
unbounded fluid moving a t  a constant velocity is the well-known Stokes velocity field, 
which decays only as r-’ far from the particle, where r is the radial distance measured 
from the particle centre. Solving (3.1) with the Stokes velocity field, one obtains a 
concentration disturbance that does not decay with radial distance far from the 
particle. The expression (3.5) for the convective contribution to the effective 
diffusivity involves an integral over all space of the product of the velocity and 
concentration disturbances. This integral fails to converge at  large radial distances, 
indicating that it is not adequate to treat the particles in a fixed bed as if they were 
isolated in an unbounded fluid. 

This convergence difficulty results from our neglect of the strong hydrodynamic, 
interparticle interactions characteristic of porous media. Hinch (1977) showed that 
conditionally averaging the equation of motion ( 1 )  yields 

V*(U(X I r,)) ,  = 0, ( 3 . 6 ~ )  

(3.6b) 

where u = -p, I+p(Vu+Vut) is the stress tensor. In  the dilute limit the right-hand 
side may now be safely neglected, and (3.lu, b) become Brinkman’s equations for 
viscous flow in a porous medium. These equations differ from Stokes equations by 
the inclusion of the porous-media term &/k) (u),, which results from the body force 
exerted by the fixed particles on the fluid. The drag exerted by each particle in a dilute 
bed is approximately Stokes drag 6.1~/lu(u),, while the number density of particles 
is q5/$cu3. Thus the permeability is approximately k = &5-lu2 or in dimensionless form 
k = #-l .  The solution to Brinkman’s equations that satisfies the no-slip boundary 
condition on the particle surface and sums to the bulk far away was given by Acrivos 
et ul. (1980) : 

9 
4- ~ r ( ( U ) , * r )  -p-p [( 3 + 3 ~ r  + eK(l-r) - (3 + 3~ + K ~ ) ] ,  (3.7) 

where r = x - r , ,  r = I rl and K = k3. This solution is identical with the Stokes 
velocity near the particle, i.e. in the limit q5 + O ,  r = 0(1) ,  but at a large radial distance 
r = O(ki) ,  known as the Brinkman screening length, the velocity disturbance is 
screened and decays like kr-3, rather than as r-l. This effect causes the expression 
(3.5) for the effective diffusivity to become convergent, but only after integration has 
been carried out over a large O(ki)  volume. 

As a result, the dominant contribution to the effective diffusivity in (3.5) occurs 
at  large distances. r = O ( d ) .  This allows us to make several important simplifications 
in the asymptotic analysis for small 9 : (1) in this region the particle appears as a point, 
allowing the velocity field (u) ,  to be that of a point force rather than the full 
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expression (3.7); (2) no boundary conditions on the concentration field (c), need to 
be satisfied at the particle surface, and no solution is needed inside the fixed particle ; 
and (3) the 1 -m-l particle contribution in (3.5) can be neglected, and the integral 
can be carried out over all space using only the point-particle velocity and 
concentration disturbances. 

An equation for the concentration disturbance (c’), = (c), - (c), appropriate for 
a point particle may be found by subtracting the bulk equation (2.3) from ( 3 . 1 ~ ) :  

P( u),  V( c’), - v y  c’), + P( u’), V( c), 

= (a - 1 )  J dr, [ w, I r1) V(C(X, t I r1, r 2 ) ) 2  - m 2 )  V(C(X, t I r*))1] 
Ix-rgl Q 1 

+PV*[<(u- (u),)  (c-~~)1))1-~~’C’)ol~ (3.8) 

Note that, although the bulk average and conditionally averaged concentration fields 
are time-dependent, the concentration disturbance depends only on V(c),, which is 
independent of time, and so (c’), is also time-independent at long times. 

Since V(c), and (u),  are constant and (u>, is a function only of x-r,, (c’)~ is 
only a function of x-r , .  The transformation R = k-;(x-r,) exploits this fact and 
places the dominant convective contribution to the effective diffusivity at R = O(1). 
Thus, neglecting the particleparticle interaction terms on the right-hand side (which 
is justified in the Appendix), (3.8) becomes 

S( U) , *V,( c’), - Vg( c’), = - S k i (  u’), V( c), . (3.9) 

Note that the bulk concentration gradient V(c),, being constant, has not been 
transformed. The appearance of the screening-length PBclet number 9’ = Pki in (3.9) 
reflects the fact that the screening length is the characteristic length over which the 
excess mass flux caused by a particle decays, and thus the magnitude of 9 determines 
whether convection or conduction is dominant in the region of interest. A t  these large 
radial distances, r - ki, the conditionally averaged velocity is approximately equal 
to the bulk velocity. Thus approximating (u) ,  on the left-hand side of (3.9) by 

(u) ,  (U)o+O(k- i ) ,  
and solving by Fourier transform, we obtain 

(3.10) 

where the transform is denoted by and is the transform variable of R. (&‘({)),, 
the transform of the point-force velocity disturbance in a fixed bed, is (Saffman 1973) 

(3.11) 

The integral for the convective contribution (3.5) to the effective diffusivity may 
be extended over all space, and when transformed into R-variables it becomes 

- D*.V(c), = - ‘”’ I d R  (u’ (R)) , (c’(R)),. 
t x  

Using the convolution theorem in t, we have 

(3 .12~)  

(3.12b) 



Dispersion in $xed beds 409 

Since V(c), is constant, (3.10)-(3.12) show that D* is indeed a constant, and is 
given explicitly by 

(3.13) 

An expression equivalent to the transverse component of (3.13) was given by 
Carton, DuBois-Violette & Prost (1983) for the transverse diffusivity in a dilute fixed 
bed, defined as the rate of increase with time of the second moment of the probability 
distribution for a single Brownian particle in a fixed bed in the limit of long times. 
Unfortunately, these authors misinterpreted the origin of the velocity disturbances, 
and instead of using the Brinkman velocity field for both the (d), in (3.10) and the 
(u’), appearing explicitly in (3.12) they used a Stokes velocity field for one and a 
Brinkman field for the other. This led to subsequent errors in their final expression 
for DT, the transverse diffusivity. It is reassuring, however, that the definition of the 
diffusivity based on the response to a steady concentration gradient used in this paper 
and the definition based on a moments approach used by Carton et al. yield equivalent 
integral expressions for the long-time transverse diffusivity. 

Carrying out the integration in (3.13) explicitly shows that the off-diagonal 
elements of D* are zero, as one would expect from symmetry considerations. The 
transverse (perpendicular to the bulk-flow direction) component of the convective 
contribution to the effective diffusivity is 

( 3 . 1 4 ~ )  D l  = k-h[++f I B I-’-: I B +:(I B 1-4 I B 1-l) In (I B I + l)], 

while the longitudinal (in the direction of the bulk flow) component is 

D f  = k 3 [ f  I B I -2-iI B I-l+3 IB y + 3 ( 1 B  1-l-I B 1-7 In (I B I + l)]. (3.14b) 

The absolute value of B appears in (3.14) directly as a result of the integration, and 
reflects the fact that reversing the direction of the bulk flow does not change the 
effective diffusivity. DT kk and D;  ki are plotted as functions of B in figure 1. The 
asymptotic limits at low and high B are indicated by dotted lines. 

The low-8 asymptotic behaviour is obtained by neglecting the convective term 
9’(u),  *V, (d), on the left-hand side of (3.9), or equivalently neglecting the 
convective term -iB(u),*C in the denominator of the integrand in (3.13). The 
resulting asymptotic form, which may also be derived directly from (3.14), is 

( 3 . 1 5 ~ )  

(3.15 b)  

It is interesting to note that this convective contribution to the effective diffusivity 
becomes larger than the pure-conduction contribution, (3.3), even at very low particle 
PQclet numbers $1 4 P < $k. This surprising behaviour occurs because the convective 
flux occursover alarge O ( d )  = O($-t) volume, while the pure-conduction contribution 
comes only from a region of the order of the particle size. 

While we have treated the low@ asymptote of (3.14) in this section, the high-8 
asymptote is particularly important, and we discuss it separately in 94. 
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FIGURE 1. The convective contributions (3.14% b) to the transverse and longitudinal diffusivities 
at low P are plotted as functions of the PBclet number B based on the screening length k!. The 
dotted lines indicate the asymptotes (3.15a, b), ( 4 . 8 ~ )  and (4.9) a t  low and high 8. 

4. Mechanical dispersion at high screening-length Pklet numbers 
I n  this section we consider dispersion at high screening-length PBclet numbers 8, 

where convection is expected to  dominate over molecular diffusion. The most 
straightforward mechanism obtained by neglecting the small molecular-diffusion and 
particle-interaction terms in the concentration disturbance equation (3.8) is developed 
in $4.1. There are two limitations to this analysis, however. (1) There is no contribu- 
tion to  the transverse diffusivity from the one-sphere mechanical analysis. This 
problem may be addressed by including molecular diffusion, particle interactions or 
non-spherical particles in the analysis, as discussed in $4.2. (2) There are regions 
in the bed where the concentration disturbance determined through the purely 
mechanical analysis of $4.1 is singular, and these regions make important contribu- 
tions to the effective diffusivity at very high P6clet numbers. This forms the basis 
of our discussion of ' holdup ' dispersion in 55. 

4.1. Longitudinal diflusivity 
The purely mechanical one-particle convection-diffusion problem is obtained by 
neglecting the diffusion and particle-interaction terms in (3.8), giving in R-variables 

(4.1) ( u > l '  v R ( c ' ) ,  = -ki(u')l*v(c)o.  

Justification of the neglect of particle interaction terms can be found in the Appendix. 
The solution to (4.1) is 

where 7 is the coordinate along the streamlines of the conditionally averaged velocity 
field (u) , ,  with metric coefficient h,, 8 is the coordinate in the direction of rotational 
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invariance, and @ is the third orthogonal coordinate. We have imposed the condition 
that the particle does not affect the concentration far upstream, i.e. ( c ‘ ) ,  - 0 as 
7 +- 00. Substituting the mechanically determined concentration disturbance (4.2) 
into the expression (3.12a) for the effective diffusivity gives 

Equation (4.3) is nothing more than the volume integral of the velocity-disturbance 
correlation function 

which measures the correlation between the velocity disturbance experienced by a 
fluid element at a given time, i.e. given 7, and the fluid element’s velocity disturbance 
at all previous times - previous 7. A similar expression may be used to relate the 
Brownian diffusivity of a tracer particle to the tracer particle’s velocity correlation 
function. 

Far from the fixed particle, where we expect the dominant contribution to the 
diffusivity (4.3) to occur, the conditionally averaged velocity is approximately the 
same as the bulk velocity, and the streamlines are nearly straight lines parallel to 
the bulk-flow direction, i.e. (u) ,  x (u),  and 7 x 2, where Z is measured along the 
flow direction. Thus (4.3) becomes 

where @, 8 , Z )  form a cylindrical coordinate system. The integrations in Z and 2’ 
can be carried out to give 

where 

An equation for this ‘two-dimensional ’ velocity disturbance (u’),, can be obtained 
by integrating Brinkman’s equation (3.6) with respect to Z from - 00 to + 00. The 
point particle at the origin forces the velocity disturbance. In Fourier space (u‘),, 

is given by 1 (a’)  I,( A )  = 6xk-t( u), 7 
h + 1 ’  

where A is the two-dimensional transform variable corresponding to (p, 8). The 
convolution theorem in iz can be used to write (4.5) as 

Integrating (4.7) with (4.6), D* is 

( 4 . 8 ~ )  

(4.8b) 

Equation ( 4 . 8 ~ )  can also be obtained directly from the asymptotic beheviour of (3.13). 
In evaluating (3.13) for high 9, it is necessary to retain the asymptotically small 

14 YLY 154 
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diffusive term g2 compared with ~ B ( U ) ~ . <  in order to avoid a singularity at  
(u);< = 0, even though the final result does not depend on diffusion. In  fact, any 
small number 6 may be used in the denominator of (3.13) to remove the singularity 
at  (u);< = 0, and then letting e+O in the final result will show independence of 6. 
The development presented in this section has the advantage that it demonstrates 
unequivocally that molecular diffusion plays no role in determining the asymptotic 
behaviour at high 9 of D;.  In  dimensional form, Dif = I U I a ,  independent of D,. This 
dispersion is of a purely mechanical origin caused by the stochastic velocity field in 
a random fixed bed. 

4.2. Transverse diffusivity 

There is no contribution to the transverse diffusivity from the one-particle, purely 
mechanical, analysis presented above. This null result occurs because the integral of 
the transverse component of the velocity disturbance along any streamline is zero, 
as it must be for streamlines that possess fore-aft symmetry. If we considered a fixed 
bed of particles that do not possess fore-aft symmetry (such as spheroids with their 
axes oriented at oblique angles to the direction of the bulk flow), the one-particle 
hydrodynamic analysis would yield contributions to the transverse diffusivity . For 
the bed of spheres considered here, however, contributions to Df are obtained only 
through consideration of molecular diffusion or particle interactions. 

4.2.1. Diffusion correction 

disturbance in inverse powers of 8: 
The diffusive correction to (4.8) may be obtained by expanding the concentration 

(c’), = (c’)l ,0+8-1(C’)1,1+ .... 
The first term (c ‘ ) , ,  
disturbance (4.2). The second term (c’) , ,  , is obtained by solving 

is just the hydrodynamically determined concentration 

(u) , .  v, (c’) , , ,  = VYC’),, 0’ 

(c’),,  ,, unlike (c’),,  o, does contribute t o  transverse dispersion. Since (c’),, , is O ( 9 - l )  
smaller than (c’),,  the leading behaviour of DT, 

D , -  *-W+t 8 ( 9 % 1 ,  P - 4 1 ,  9 - 4 1 ) ,  (4.9) 

is smaller than the O(P) longitudinal diffusivity ( 4 . 8 ~ ) .  Equation (4.9) is surprising 
in that D: is independent of the bulk velocity, even though it is caused by the 
convective motion within the bed. This anomalous behaviour can be explained in the 
following way. Because of the fore-aft symmetry of the one-particle Streamlines, 
transverse diffusion in the absence of particle interactions can occur only by 
molecular diffusion normal to the streamlines at high B. The particles affect this 
transverse dispersion by distorting the streamlines. Thus the effect of the particles 
is independent of the magnitude of the velocity as long as B % 1 and particle 
interactions may be neglected. 

4.2.2. Correction due to particle interactions 

We have noted that the null result for the transverse diffusivity obtained from the 
one-particle hydrodynamic analysis in 54.1 is related to the fore-aft symmetry of the 
streamlines for flow past a sphere. The streamlines for flow past two spheres do not 
have fore-aft symmetry in general, however. Thus we expect that the inclusion of 
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particle interactions in the analysis will result in a purely mechanical contribution 
to the transverse diffusivity. In  the Appendix we show that these contributions are 
O(P@). Thus for $4 < P < 1 the diffusively driven contribution to the transverse 
diffusivity, (4.9), obtained in 84.2.1 is dominant, while for P % 1 particle interactions 
are more important and 0: = O(Pq54). 

We can include these particle interactions in a self-consistent mapner by renorm- 
alizing the equation (3.8) for the concentration disturbance using the same effective 
diffusivity that we have calculated for the bulk diffusion problem: 

P( u), V(C’), - V D * V(C‘), + P(u’), * V(C), 

= (01- 1) J; dr2 m 2  I r1) V(c(x9 t I I,, 12))s 
x-rpl Q 1 

- PV*((U- (u),) (c- (c),)),- V *  (D*+ D”) .V(C’),. (4.10) 

It is not clear whether this self-consistent renormalization approximation fully 
accounts for all the two-particle effects that influence the effective diffusivity at 
leading order. However, it does give the correct functional dependence of the effective 
diffusivity on P and 9, and we shall see in $6 that the result compares well with 
experimental data. 

Neglecting the right-hand side, which is shown to be small in the Appendix, (4.10) 
can be solved in a manner analogous to that used in $4.2.1, so long as I D I 4 8, a 
requirement that will be justified a posteriori. If we expand the concentration in 
inverse powers of 8, (c ’ ) , ,  again gives no contribution to the transverse diffusivity. 
The leading behaviour of 0: then comes from substituting (c‘) , ,  ,, obtained by solving 

(u),. v, (c ’ ) , ,  1 = v * D ’ v Wl, 0 

into the integral (3.12) for the effective diffusivity. The resultant transverse diffusivity 
is 

2142 
80 

(4.11 a) 

This result reduces to the result 

obtained in $4.2.1 when P < 1 and 8 $ 1, so that Dll x D, x 1 .  Solving (4.11 a) for 
D, and using (4.8a) for Dll, 

At high P, D ,  becomes 

(4.11 c) 

indicating that at  sufficiently high PBclet numbers the dimensional transverse 
diffusivity is independent of the molecular diffusivity, i.e. 

$41 Ula .  D,=- 
63 4 2  

320 
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5. Non-mechanical dispersion at high Pkclet numbers 
In $4 we derived a diffusive behaviour that is based solely on the stochastic velocity 

field in the bed. In doing so we neglected the details of the problem near and inside 
the particle, treating i t  as a point. This point-particle approximation was based on 
the fact that the O( 1) region near the particle makes a contribution to the diffusivity 
that is of smaller order in the volume fraction than that of the O ( # - f )  region over 
which the velocity-disturbance-driven flux occurs. Some of these finite-particle 
contributions to the diffusivity are non-mechanical, however, i.e. they depend on the 
molecular diffusivity even at large PBclet numbers, and they are thus of higher order 
in the PBclet number than the purely hydrodynamic results obtained in $4. These 
non-mechanical contributions influence the leading behaviour of the diffusivity a t  
very high PQclet numbers. 

In qualitative terms non-mechanical dispersion arises when a solute molecule 
introducedat some point in the bed cannot sample all points within the microstructure, 
i.e. all positions relative to the fixed particles, by convection alone. Such points exist 
inside and on the surface of the fixed particles and within any region of closed 
streamlines. The solute can escape the region of closed streamlines or the particle 
surface or interior only by molecular diffusion. A quantitative criterion for non- 
mechanical dispersion is that the purely hydrodynamic integral (4.3) for the effective 
diffusivity fails to converge. 

5.1. Dispersion due to holdup of solute in particles 

The conditionally averaged velocity (u) ,  is zero inside the particles, so the 
hydrodynamically determined concentration disturbance (4.2) and the integral (4.3) 
for the diffusivity are singular in the particle interior. This indicates that molecular 
diffusion must be considered in order to obtain a finite time-independent diffusivity. 

At high PBclet numbers the particle interiors contribute to dispersion primarily by 
trapping portions of the diffusing species and holding them back against the bulk flow. 
The magnitude of this ‘holdup’ dispersion, which we shall denote by DE, can be 
rationalized by a simple physical argument. In  the limit of high PBclet number, where 
this contribution is important, the resistance to mass transfer in the fluid is 0 ( P i )  
smaller than the diffusive resistance within the particle (Acrivos & Taylor 1962). The 
residence time of the diffusing species or solute in a single particle is t,,, - a2/Dp, 
the diffusive time for the particle. The solute in the fluid has a velocity U relative 
to the solute in the particle, so the displacement of the solute in the particle relative 
to that in the fluid, i.e. its mean free path, is A - Ut,,, = a2U/Dp.  At any time the 
fraction of the solute in the particles isf, - m-’#. The resulting diffusive contribution 
is the product of the velocity, the mean free path and the fraction of solute being 

a 2 P  1 held hick at any given time- 
0 t h  % fpAUw-$-. 

DP 
The correct numerical coefficient for this holdup dispersion contribution is obtained 

by evaluating the portion of the convective flux integral (3.5) inside the particle, i.e. 

( 5 . 1 ~ )  

where (c), is the solute concentration at equilibrium. Making use of the fact that 
(u) = - (u ) ,  inside the particle and substituting (2.6b) for (c),, (5 .1~)  becomes 

- D l  V(C), = a, w [ dr1 (U’>l [(c)1 - (c)pl, 
3 x--I1l< 1 
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The concentration field (c), within the particle obeys (3.1 b). The boundary 
conditions (2 .2d)  e )  may be replaced by 

(c), = -(c)f 1 = 1 +Y) (c>o 
m 

at lx-rll = 1, 

with an O(P-4) error, since the primary resistance to mass transfer is within the 
particle. 

Defining a particle-interior concentration disturbance 

as suggested by the convective flux integral, the equation for ( ~ 6 ) ~  is, in place of (3.1 b) 
and (5.2), 

(5 .34  

( C ~ ) ~ = O  a t I x - r , l = I .  (5.3b) 

Because the bulk concentration (2.8) decays linearly with time in response to the bulk 
convection, and (c;), is assumed time-independent at long times, the time derivative 
in (3.1 b) is replaced by a steady source term in equation ( 5 . 3 ~ )  for the concentration 
disturbance in the particle. This source reflects the fact that solute must diffuse out 
of the particle in order to maintain a constant concentration disturbance in the 
presence of a decaying fluid concentration. The solution for (c;) ,  is easily obtained, 
and when substituted in (5.1 b) it gives 

1 
m 

vyc;), = --P(l  +y)2(u)o.v(c)o, 

(5 .44  

D z h  = 0 (5.4b) 

When the particles are impermeable to the solute (m-l = 0) this holdup dispersion 
is absent. This simply means that the solute cannot be dispersed by retention in the 
fixed particles when it cannot penetrate the particles. The equivalent criterion for 
the absence of holdup dispersion in the heat-transfer problem is that the heat capacity 
of the particles be small compared with that of the fluid. Note also that holdup 
dispersion acts only parallel to the bulk flow. 

Reis et al. (1979) studied dispersion in a bed of fixed spheres assuming uniform 
one-dimensional flow in the fluid phase and assuming that the rate of mass transfer 
from the spheres to the fluid could be written in terms of the product of a mass-transfer 
coefficient and the concentration difference between the spheres and the fluid. They 
obtained an expression for the effective diffusivity that reduces to ( 5 . 4 ~ )  in the 
present limit P & l .$  Reis et a2. found neither the hydrodynamic dispersion of 553 
and 4 nor the logarithmic dispersion that we shall examine in $5.2, because they 
neglected the effect of the particles on the velocity field in the fluid. 

Although we have presented this holdup dispersion on the context of the dilute 
results on 553 and 4, it  should be clear that these results are not limited to dilute 
systems. Since the leading effect in P occurs within the particles and the particle 
surfaces are at constant concentration, (5.4~2, b) are valid in fixed beds of any volume 
fraction. 

$ The expression (122) for the holdup dispersion contribution presented by Reisa et al. differs 
from (5.4a) by a factor of 1 + y  because they defined the effective diffusivity in terms of the fluid 
concentration rather than the bed-average concentration, and by a factor of (1 because their 
expression is written in terms of the superficial velocity rather than the bed-average velocity. 
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5.2.  Non-mechanical dispersion in the Jluid 

Even if the fixed particles are impermeable to the diffusing species, non-mechanical 
dispersion arises owing to stagnant regions and to regions of closed streamlines in 
the fluid. We do not expect regions of stagnant fluid in a bed of solid spheres, but 
a porous medium with a more complex microstructure, particularly one that contains 
dead-end pores, might well possess regions of stagnant fluid. If they exist these 
stagnant regions make O( P2q5& holdup dispersion contributions to the longitudinal 
diffusivity, where q5s is the volume fraction of such stagnant regions in the bed. 

In a bed of fixed spheres no stagnant fluid regions are expected, but regions of closed 
streamlines do arise for Stokes flow past two fixed spheres (Davis et al. 1976). In the 
dilute limit the flow near two fixed spheres in a fixed bed satisfies Stokes equations 
approximately, although the full Brinkman equations must be used far from the 
particles. Thus we can infer that regions of closed streamlines enter the fixed-bed 
analysis at  the level of the two-particle problem. Because the solute can only escape 
a region of closed streamlines by molecular diffusion normal to the streamlines, these 
regions are expected to make an O(q52P2) holdup contribution to the effective 
diffusivity . 

At the level of a one-sphere problem there are no regions of closed streamlines and 
no stagnant fluid. As we shall now see, however, the hydrodynamically determined 
concentration is singular at the particle surface, and this leads to an O(q5P In P)  
‘ boundary-layer ’ contribution to the longitudinal diffusivity. 

The purely hydrodynamic mass-conservation equation 

@>I v ( 0 1  = - <u’>, v < c > o  

reduces near the particle surface to 

where y = r -  1 < 1. Solving (5.5) by the method of characteristics, the streamlines 
(or characteristic curves) are 

~ = y sine, ( 5 . 6 ~ )  

where $ is the stream function, which is constant along streamlines. The hydro- 
dynamically determined concentration disturbance is 

(5.6b) 

Substituting (5.6b) and (u’),  = - (u),  into the portion of (3.5) near the particle, and 
using the volume element dV = dy sinode, this purely mechanical analysis gives a 
contribution near the surface of 

(5.7a, b )  

Here B is an arbitrary small constant ( E  4 1) introduced to avoid carrying the 
integration in (5.7a) outside the region y 4 1 where the present approximation is 
valid. The integral in (5.7a) is conditionally convergent at y = 0, indicating that the 
purely mechanical analysis does indeed break down near the particle surface. 

The problem is that, even at high P, diffusion becomes important in a thin 
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boundary layer y = O(P-i) near the particle surface. In 
convectiondiffusion equation is 

where the stretched coordinate Y = y@. This equation is 

417 

this boundary layer the 

= @(u>, - V(C>,, (5.8) 

similar to the boundary- 
layer equation obtained in the problem of determining the coefficient of mass transfer 
from a sphere in Stokes flow (Acrivos & Taylor 1962). However, the source on the right- 
hand side of (5.8) makes finding the solution of this boundary-layer problem more 
difficult. 

Fortunately, we can obtain the leading effect of the particle surface boundary layer 
on dispersion without determining the full solution of (5.8). The most important effect 
of diffusion is to eliminate the singularity in the hydrodynamically determined 
concentration (5.6 b). An approximation to the concentration disturbance that 
reflects this important effect of diffusion is 

where b is an 0(1) constant. Equation (5.9) is identical with the hydrodynamic 
solution (5.6) outside the boundary layer, but the concentration disturbance becomes 
an O ( e )  constant in the boundary layer. Substituting (5.9) in the portion of (3.5) 
near the particle gives the boundary-layer contribution 

(5.10u, b )  

In the Appendix we show that the use of the approximate concentration disturbance 
(5.9), which is constant in the boundary layer, rather than the full solution of (5.8), 
causes a small O($P) error. Note also that the leading term in (5.10~) is independent 
of the constant b. This indicates that the exact form of the concentration disturbance 
in the boundary layer does not affect the leading O($P In P)  term in (5.10). We only 
need to recognize that the singularity in (c'), as y+O is eliminated and that 
(c'), = O ( @ )  in the boundary layer.$. 

Boundary-layer dispersion will occur in any porous medium owing to the no-slip 
condition at solid surfaces. The $P$ in (5 .10~)  will in general be replaced by a factor 
that depends on the nature of the microstructure, but the P In P behaviour is 
independent of the details of the microstructure. Because the boundary-layer 
dispersion and the permeability are both related to the velocity gradient at the 
particle surfaces, one might hope to generalize (5 .10~)  by finding a correlation 
between Dc BL and the permeability k. However, while the permeability is related 
to an integral of the velocity gradient over the solid surfaces, and is influenced 
primarily by regions of high velocity gradients, such as in the narrow gaps where two 
particles are nearly touching, the dispersion occurs primarily in regions of low velocity 
gradients, such as in the junctions connecting the narrow gaps, where the diffusive 
boundary layer is thickest. Thus, no general correlation between dispersion and 
permeability can be drawn. 

$ Saffman (1959) used a similar scheme to obtain the a,nalogous logarithmic term in his pore 
model for a consolidated porous medium, placing a diffusively determined maximum value on the 
time taken for a solute molecule to pass through a pore. However, Saffman was apparently not 
aware of the @ scaling of the diffusive boundary layer (this scaling was first worked out three years 
later by Acrivos & Taylor 1962). As a result Saffman chose the wrong maximum transit time, 
causing an error in his expression (his (4.5) with ( 4 . 3 ~ ~ ) )  for the long-time longitudinal diffusivity. 
The second and third terms in his ( 4 . 3 ~ ~ )  are too large by a factor of three. 

D f ,  BL = +n2$P In P + O($P), 0: BL = 0.  
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Because of the linearity of the mass-conservation equation (3.1), the solutions of 
(5.1) and (5.2) can be superimposed. Thus the full form of the longitudinal diffusivity 
a t  high PBclet numbers including the mechanical contribution and the various 
non-mechanical (holdup and boundary-layer) terms is 

(5.1 1) 

6. Results and conclusions 
I n  this final section we summarize the results derived in the present theoretical 

analysis and compare them with the experimental work reported by Fried & 
Combarnous (1971). It has been shown that macrotransport in a fixed bed may be 
described by a macroscopic Fick’s law in the long-time limit, provided that the 
concentration gradient varies slowly over the lengthscale of the one-particle problem. 
The results of 8s3-5 taken together provide a description of the leading effect of the 
particles on the effective diffusivity. These results are summarized in table 1. 

The asymptotic analysis presented here demonstrates the diversity of physical 
processes leading to diffusion in porous media. In  the absence of convection, the 
particles affect diffusion through the difference in diffusivities of the fluid and 
particulate phases. I n  the presence of a bulk convective motion, however, even a t  
low PBclet numbers, g5i + P + @, the stochastic velocity field induced by the 
particles becomes a more important factor affecting macrotransport than the 
difference in diffusivities. The effect of convection is unexpectedly strong because 
velocity disturbances in a porous medium are correlated over a lengthscale ki -a#-; 
that  is large in a dilute (highly permeable) medium. 

I n  either a theoretical or experimental study of the effect of such a stochastic 
velocity field on dispersion it is important to be sure that one obtains a truly diffusive 
behaviour, i.e. one in which the mean-squared displacement of a tracer particle grows 
linearly with time. Such a diffusive behaviour is obtained in general only if there is a 
mechanism by which a tracer particle may sample all possible values of the stochastic 
velocity field. In a porous medium this means sampling all points in the micro- 
structure of the medium. At sufficiently low PBclet numbers 9 = Pki - P$-i + 1 ,  
molecular diffusion plays the role of transporting the tracer particle through the 
microstructure. Because molecular diffusion causes the velocity fluctuations ex- 
perienced by the tracer to become uncorrelated, it inhibits the convective transport, 
and the resulting diffusivity grows as U2aZ/Df@, as we saw in $3. 

At high PBclet numbers the bulk convective motion in the bed becomes a more 
important mechanism for transporting the tracer throughout most of the bed. As a 
result molecular diffusion has no role in the dispersive mechanism, giving rise to  the 
O( Ua) purely mechanical diffusivity derived in $4. 

There are, however, regions in the bed that the tracer cannot sample by convection 
alone. These include regions where the velocity is zero no matter how strong the bulk 
flow, such as the interior of fixed particles and dead-end pores, and regions of closed 
streamlines. Molecular diffusion is the only mechanism by which the tracer can sample 
these regions, and so they contribute a dispersivity that grows like U2a2/D even in 
the high PBclet-number limit as discussed in 85.1. Here D may be either Df or D,, 
depending on whether the region in question is in the fluid or the particles. 

Finally, yet another mechanism discussed in $5.2 governs dispersion in the fluid 
near surfaces where the fluid satisfies a no-slip boundary condition. Here there is no 
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Flow regime Longitudinal Dil/D, Transverse DJ D, 

3(a-l)  4 2  P2 
P < # < l  l+- 

a+2 + + z p  
(9 4 1) 

3(a-1) 4 2  P2 
1 +- 

a+2  ++so$ 
$1 < P < 1 figure 1 ,  (3.14b) figure 1 ,  (3.14a) 

P % l  
63 4 2  

320 
1 +- $4 I P I 

TABLE 1.  The leading behaviour of the effective diffusivity is given for all values of the PBclet 
number P = Ua/D,. 9 = Pa-ld is the PBclet number based on the screening length. The factor y is 
given by ( 2 . 6 ~ ) .  

finite region of zero velocity, but the velocity goes to zero at  the surface. The tracer 
samples this region by a combination of convection and diffusion normal to the 
surface. As a result the contribution to the effective diffusivity from this region, 
O( Uu In (Uu/D,)),  depends on the diffusivity, but the dependence on D, is much 
weaker than the O( UZu2/D) dispersion obtained in finite regions of zero velocity. 

Although the dispersion mechanisms discussed above were discovered through an 
asymptotic analysis in low solids volume fraction, these same physical processes occur 
in more densely packed beds. Thus the predicted PBclet-number dependence of the 
effective diffusivity obtained here is applicable to densely packed beds and porous 
media. In  fact, the holdup dispersion contribution is given by (5.4~2) independent of 
the volume fraction at high PBclet number. The volume-fraction dependence of the 
mechanical and boundary-layer dispersion contributions in dense beds cannot, 
however, be determined from the dilute-bed analysis. The similarities between the 
mechanisms of dispersion in dilute and dense systems indicates that it is reasonable 
to compare these calculations with experimental data taken in densely packed beds. 

Fried & Combarnous (1971) have collected the results of several experimental 
investigations of dispersion in packed beds of impermeable particles. The experimental 
procedure was to introduce a step change in the concentration of a dilute solute and 
observe the resultant concentration profile downstream from the inlet. It was found 
that sufficiently far downstream the concentration profiles were well fitted by the 
exponential profiles that would be obtained by substituting step functions as the 
initial condition in the macroscopic Fick's law ( 2 . 3 ~ )  and (2.5) with a constant 
diffusivity. The experimentally determined diffusivities are taken to be those values 
of the diffusivity which give the best fit of the experimentally observed concentration 
profiles. The resultant longitudinal and transverse diffusivities are plotted as 
functions of the PBclet number in figure 2. 

At sufficiently large distances from the inlet, the experimental concentration 
profiles satisfy the condition that the concentration gradient vary slowly over a 
distance uq5-4, so the present long-time analysis is applicable. A uniformly valid 
approximation for the transverse diffusivity in a bed of impermeable particles may 
be obtained by summing the diffusivities given by (3.3), ( 3 . 1 4 ~ )  and (4.11b) and 
subtracting the behaviour (4.9) of these solutions in their overlap region q5; 6 P Q 1. 
The leading behaviour of the longitudinal diffusivity is given by the sum of (3.3), 
(3.14b) and (5 .10~) .  The theoretical results plotted in figure 2 were obtained by 
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lo-' 1 10 102 108 104 

P = Ua/D, 

FIGURE 2. The theoretically predicted values of the effective diffusivity (solid lines) obtained 
through the present asymptotic analysis are compared with the experimental values reported by 
Fried BE Combarnous (1971). A indicates an experimentally obtained transverse diffusivity and 
an experimental value for the longitudinal diffusivity. We have arbitrarily chosen P = 1 as the 
point where the high-P asymptotic result (5.1 1) for the longitudinal diffusivity becomes valid, and 
this causes the change in slope evident at P = 1. 

substituting the volume fraction q5 = 0.5, typical of packed beds, into these uniformly 
valid approximations. $ 

The theory shows very good agreement with the experiments, even as far as the 
numerical coefficients are concerned. In particular, both theory and experiment show 
a transition from a low-P behaviour, where the effective diffusivity is independent 
of P and of the same order as the molecular diffusivity, to a high-5' behaviour, where 
the effective diffusivity grows with P. The theoretical prediction of the transverse 
diffusivity is quite close to the experimentally measured values at high P ;  both theory 
and experiment indicate that D, grows linearly with P. A t  very high P the theory 
predicts that the longitudinal diffusivity grows like P In P. Considering the scatter 
in the data, it is not easy to distinguish this 0(5' 1nP) behaviour from the O(P) 
diffusivity predicted by mechanical dispersion. It does appear, however, that 
the experimentally measured longitudinal diffusivities grow faster than P for 
lo2 < P < lo4. Note that the good agreement between theory and experiment has 
been obtained here without any adjustable parameters. 

We have not included the O($2P2) contribution to the longitudinal diffusivity that 

$ Both the O(4) Maxwell term and the O($*) Jeffrey correction were included in the calculated 
results in figure 2. Thus for impermeable particles D" = I( - 1.54 +0.588$*). 
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is expected to arise from the holdup of solute in regions of closed streamlines in the 
theoretical curve in figure 2. This holdup dispersion is not detectable from the 
presently available experimental data on longitudinal dispersion in fixed beds of 
impermeable particles. Two possible explanations for the failure of experimentalists 
to observe this O(P2) behaviour are as follows. (1) The numerical coefficient of the 
O(P2) term in the longitudinal diffusivity may be quite small owing to the small 
fraction of the bed that is made up of regions of closed streamlines. It would then 
be necessary to obtain data at higher P6clet numbers than those contained in figure 2. 
(2) The data at very high PBclet number contained in figure 2 may have been taken 
without allowing sufficient time to reach the long-time diffusive behaviour. 

Han, Bhakta & Carbonell (1984) noted that in the experiments of several previous 
investigators insufficient time was allowed for the final diffusive behaviour to be 
observed. Their own time-dependent experiments indicated that the apparent 
longitudinal diffusivity increased with time before reaching its long-time asymptote. 
They observed no time-dependent behaviour for the transverse diffusivity, however. 
These observations can be explained in terms of the present theoretical results. 

Transverse dispersion is caused by mechanical mechanisms alone, so the charac- 
teristic time for D ,  to reach its long-time behaviour is a/ U@. On the other hand the 
longitudinal diffusivity depends on non-mechanical mechanisms arising from the 
no-slip boundaries and on holdup dispersion. The characteristic time required for the 
boundary dispersion to reach its long-time behaviour is the diffusive time in the 
boundary layer, a2P+/Df = a@/ U ,  while the characteristic time for holdup dispersion 
is a2 /Df  = aP/U. At high PBclet numbers the mechanical dispersion that determines 
the transverse diffusivity reaches its long-time behaviour much faster that the 
boundary and holdup dispersion terms that influence longitudinal diffusion. Thus it 
is not surprising that Han et al. observed a time-dependent D,,, but a time-independent 
D,. We plan to address the problem of time- and space-dependent diffusivities in more 
detail in a future paper. 

The present analysis suggests that longitudinal dispersion in heterogeneous media 
in the presence of convection is inherently non-mechanical in the limit of high PQclet 
numbers. Even in the absence of the O(P2) holdup dispersion contributions, the 
longitudinal diffusivity is non-mechanical at high P owing to the O(P In P )  boundary- 
layer dispersion. The only prerequisite for the appearance of such non-mechanical, 
boundary-layer, dispersion effects is a bulk convective motion relative to solid 
surfaces on which no-slip boundary conditions must be satisfied. Thus this type of 
non-mechanical dispersion is expected in all types of porous media, both unconsoli- 
dated and consolidated. Note that Saffman (1959) observed this type of behaviour 
in a capillary network model of a consolidated porous medium. Some recent studies 
of convective transport in lattice or network models of porous media (e.g. Adler & 
Brenner 1984; Gavalas & Kim 1981 ; Sahimi et al. 1983) and even in fractal models 
(Adler 1984) have simplified the convective motion into a ‘conductance ’ formulation, 
and have thus overlooked this important non-mechanical boundary-layer dispersion, 
which is expected to be the dominant mechanism for longitudinal dispersion at high 
PBclet numbers. 

In addition to being restricted to long times, the present analysis describes only 
the macrotransport or macromixing of the solute. The macrotransport equations 
( 2 . 3 ~ )  and (2.5) derived herein describe the evolution of the ensemble-average 
concentration, which is equivalent to the volume-average concentration for a volume 
containing many particles. Information concerning the micromixing of the solute, i.e. 
mixing on lengthscales equal to or smaller than the interparticle separation, is lost 
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in the averaging process. This distinction is particularly important when macromixing 
is accomplished primarily by mechanical or hydrodynamic dispersion. Here 
macromixing is completed in a time a/U$: that is short at high P. Micromixing, 
however, requires the aid of molecular diffusion to achieve a uniform concentration 
down to the molecular lengthscale, and thus requires a much longer time a2/Df .  As a 
result, for times a/U$i + t + a2/D, the concentration is uniform on the macroscale 
1 % a, but fluctuates rapidly on the microscale 1 4 a. This phenomenon is important, 
for example, when the solute undergoes chemical reaction. 

This work was supported in part by a grant from Monsanto Company and by a 
National Science Foundation fellowship to D. L. K. 

Appendix. Justification of the asymptotic analysis 
A 1 .  Justification of the low-Pdclet-number analysis of 93 

We first turn to the task of justifying the assumptions made in the one-particle 
problem used in $3 to derive the low-cj low-P behaviour of the effective diffusivity. 

Two basic types of error have been made : those due to the fmite size of the particles, 
and those due to neglecting various convective terms in the excess-flux expression 
and in the concentration-disturbance equation. In estimating the errors of these latter 
terms, the particle can again be treated as a point. We begin by examining the 
contributions from the finite size of the particle. 

There will be a contribution to Maxwell’s correction to the effective diffusivity, D” 
in (2.7c), from the perturbation to V ( c ) ,  inside the particle at rl caused by the 
convective motion. The perturbation to V ( c ) ,  is clearly O(P),  and since the integral 
in ( 2 . 7 ~ )  is over the particle volume, this contribution is O ( ( a -  1 )  P$), which is always 
small compared with D* as given by (3.14) or (2.7d). Note that the PQclet number 
P based on the particle size is appropriate for estimating the influence of convection 
near the particle. There is also of course the O ( ( a -  1 )  $2) pure-conduction correction 
to Maxwell’s result calculated by Jeffrey (1973). 

In solving (3 .8)  for the disturbance concentration field no boundary conditions were 
satisfied at the particle surface. There are corrections to (c’), that are O((a -  1 )  r-*) 
from the source dipole that arises in Maxwell’s conduction problem and O(BPr-l) from 
a source term that arises from the time-dependent nature of the bulk field. (The origin 
of this source is clarified in $A 2. )  Using these in the excess-flux integral (3.5) gives 
corrections O ( ( a -  1) P$) and 0(P2#) respectively, which are small compared 
with I D*l. 

Neglecting the particle size in using the convolution theorem and in using the 
point-force velocity disturbance creates errors that are O(4) and O(k-i- $:) smaller 
than I D* I respectively. As discussed by Hinch (1977) and Acrivos et al. (1980), the 
error in neglecting terms on the right-hand side of the momentum equation (3.6b) 
is also O(#) smaller than the terms that have been retained. 

The final particle contributions come from the neglected ~(u), (c), term used in 
defining D* and from not evaluating (u‘>, (c’) ,  within the particle, as required by 
the excess-flux integral. It is the difference of these two terms inside the particle as 
written in (3.5) that contributes to the dispersive flux 
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(u'),  = - (u),, within the particle and the difference (C),-(C)~ will be O(a-  1) from 
the Maxwell conduction problem and O( P)  from the velocity-disturbance-driven 
concentration field outside the particle. Hence this dispersion due to the fixed 
particles holding back the tracer relative to the bulk flow is O ( ( a -  1) P$) or O(P2$), 
both of which are small. 

There are three convective errors that must be addressed. Since these corrections 
enter on the scale of the Brinkman screening length R = O(l ) ,  they are most easily 
discussed in terms of point particles and the PBclet number B based on the screening 
length. The first correction is that due to approximating the conditionally averaged 
velocity (u ) ,  by the bulk-average (u), on the left-hand side of (3.9), thus neglecting 
P k t ( u ' ) ,  VR (c'),. Using the already-determined solution for (c'),, the neglected 
term drives an O(Bk-tR-3) correction to (c'), when conduction dominates, B 4 1, 
and an O ( k f  R+) correction when convection dominates, B % 1. Substituting into 
the excess-flux integral (3.5), these corrections are O(B3k-', BE1) respectively, which 
are O(Bk-4) and O ( k f )  smaller than D f  and O(Bk-4, B k f )  smaller than Or. 

The next correction comes from approximating the exact convective-flux integral 
(3.4) by ( 3 4 ,  giving rise to an error 

J 

Using the definition of the ensemble average, (A 2) may be written as 
L L  L 

or, upon rearrangement, 

L L  

whereu" = u'-(u'(xI rl))l-(~'(~lr ,))landc" = c'-(c'(xI r,)) ,-(c'(x( ',))larethe 
velocity and concentration disturbances caused by groups of two or more partic1es.i 
The leading contribution to the two-particle velocity disturbance u"comes from the 
change in the force strength of the particle at r, due to the point-force velocity 
disturbance of the particle at rl and vice wersa. In screening-length variables 

um = o ( ~ ~ R , - R , I - ~ R - ~  2 L 
where R, = k-t(x-r,) and R, = k f ( x - r , ) .  This gives for the first term in (A 4) 

Bki dR, dR, I R, - R, I-3 Ri3(c"),, J J  
where we have taken P(rl,r2) = O(q5,) in the screening-length region. An equation 
analogous to (3.8) can be written for (c"),. It is easy to show that the leading 
contribution to (c">, is driven by Bki(u">,*V(c),, leading to a two-particle 
concentration disturbance of 

(c"), = O(BkfIR,-R,I-3R-1 , , k-' alR1-R21-3Ri2) 

t The factor of 4 in (A 4) arises because the number of groups of two particles is p, in the limit 
N - t  00, where N is the number of particles in the bed. 
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in the conduction- and convection-dominated regions respectively. Thus the first term 
in (A 4) gives corrections 

0(B2k-l, Bk-l), 

which are O ( k 4 )  = O(q5i) smaller than D;,  and O(&, 9q51) small compared with DT 
at low and high B respectively. 

The second term in (A 4) involves the correlation between the positions of two 
particles. For example, the condition that the particles do not overlap requires that 
the centres of no two particles be closer than two particle radii apart, i.e. P(rl, r,) = 0 
for I rl - r2 I < 2. We expect that the correlation between particle positions will decay, 
P(r1, r,)+;P(r,) P(r,), in an O(1) distance independent of the permeability. Thus the 
second term in (A 4) arises only near the two particles and is O(P2q52). 

The final convective correction comes from neglecting the nonlinear average 

P V  - [ ( (u  - W,) (c  - ( c ) , ) ) ,  - ( (u - (u>o) (c - < C > o D o l  

on the right-hand side of (3.8). In the limit of small q5 this term can be approximated 
as 

PV*jdr, [P(r,  I t l )  (u- ( U > A  (c -  ~ c ) l ) , - - m , )  (u’(x I r2)>1 (C’P I rzD1. (A 5 )  

As 1 x - r l  I + 00, with I x - r ,  I fixed, P(r,  I rl) - p(r2)7 (U- <U(X I r1))1)2- <u’(X I ~ z ) > I ,  

( c -  (c(x I r , ) ) , ) ,  - (c’(x I r,)),,  and the integrand of (A 5) vanishes. The form of the 
concentration field (c’), driven by (A 5) will depend on how fast P(r, I r,) - P(r,) and 
on the corrections to representing (u- (u),) ,  as (u’(x I r2) ) , ,  etc. We have assumed 
that the bed is sufficiently random for P(r, I r,) to asymptote to P(r,) on a lengthscale 
small compared with the screening length. In screening-length variables then (A 5) 
becomes 

~ k - : v , ~ ~ d R , ~ ~ u - ~ u ~ l ~ , ~ c - ~ c ~ l ~ z - ~ ~ ’ ~ x l R , ~ ~ l  (C’(XIRz)>,l. (A 6) 

The leading terms in (A 6) come from (u’ ’ )~  (c’(x I R,)), and (u’(x I R2)), (c”),. Using 
the previous estimates of (u”) ,  and (c”),  and the known results for (u‘ ) ,  and (c’),, 
these terms yield upon integration of (A 6) contributions 

O(Bk-: R T ~ ,  Bk-i R T ~ )  

in the conduction- and convection-dominated regions respectively. This right- 
hand side in (3.8) drives O(B3k--! Rr3, k-: Rr5) corrections to (c’) , ,  resulting in 
O(B3k-l, BE-’) contributions to the convective excess flux (3.5), which are O ( B k 3 )  
and O(k-i)  smaller than D;, and O(Bk-4, Bk-1) smaller than 0:. The convective errors 
are thus all small in q5. This completes our justification that all the errors made in 
$3 are asymptotically small as q5+0. 

A 2 .  Justification of the high-Pclet-number analysis 

In  $A 1 we showed that the corrections to evaluating the effective diffusivity from 
a problem involving one point-particle in a medium described by Brinkman’s 
equations of motion are of lower order in q5. There are, however, two such effects, which 
are of lower order in q5, but of higher order in P and must be included in the high-P 
behaviour of the diffusivity. These are the effect of particle interactions on transverse 
dispersion, and the non-mechanical dispersion due to the h i t e  size of the particle. 
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A 2.1. Hydrodynamic corrections 
The convective corrections to the effective diffusivity that occur in the Brinkman 

screening-length region are independent of the particle size, depending only on the 
screening-length PBclet number 9, not the particle PBclet number P. Thus the 
analysis of these convective corrections presented in $A 1 is valid at high P as well. 
These corrections are all small compared with the O(P) one particle longitudinal 
diffusivity calculated in $4.1 in the limit of high P6clet numbers. The one-particle 
transverse diffusivity calculated in 84.2.1 is only O(&, however, and two O(P&) 
convective corrections resulting from particle interactions become more important 
than the one-particle contribution at high P. These important two-particle effects 
are the two-particle velocity-concentration correlations in the convective-flux integral 
(the first term in (A 4)), and the effect of particle interactions on the one-particle 
concentration disturbance through the nonlinear average (A 5). The renormalization 
involving the use of D in the equation for the concentration disturbance (4.10) 
captures a part of the latter effect. The resulting estimate of D r  (4.1 1)  has the correct 
P#i functional dependence, but the numerical coefficient is uncertain. 

A 2.2. Non-mechanical effects in  beds of permeable particles, rn-l 4 0 
We now turn to the contributions to the effective diffusivity due to the finite size 

of the particle when the particles are permeable. The effect of convection on D" is 
0(#(a-  I )  P) ,  as it was at low P, and is thus always smaller than D*. 

The finite size of the particle causes it to act as a source and a source dipole of mass, 
leading to contributions to D*. The source dipole of strength O(a- 1)  results from 
the difference in the molecular diffusivities in the fluid and in the particles. This source 
dipole leads to an O(a- 1) concentration disturbance in the particle, which gives in 
(3.5) an O(#(a-  1)  P)  contribution to the diffusivity, which is small compared with 
the purely hydrodynamic diffusivity. 

The source behaviour results from the time-dependent nature of the bulk concen- 
tration field: ( c ) ,  in (2.8) vanes linearly with time as a result of the bulk convective 
motion. The steady decrease in the bulk concentration ( c ) ,  leads to a constant source 
of mass in the equation for the concentration disturbance 

<C'>l  = <c),-m-l( l  +Y) (c ) , .  

This source requires a steady mass flux tnrn-l(l + Y ) ~  (D,/D,) P(u);V(c) ,  out of the 
particle in order to maintain a time-independent concentration disturbance. 

This source problem is similar to Acrivos & Taylor's (1962) investigation of heat 
and mass transfer from a fixed particle in Stokes flow. They demonstrated that the 
concentration disturbance decays exponentially in an O( P t )  boundary layer near the 
particle surface, except in the wake downstream from the particle. Sih & Newman 
(1967) studied the nature of the wake in more detail. The source drives an 
O(Pm-'Df/Dp) concentration disturbance in the O( 1 )  volume of the particle, resulting 
in the O(m-l (Df /Dp)  Pa#) diffusivity calculated in $5.1. Since the source strength 
depends only on the longitudinal concentration gradient ( u ) ,  V(c>,, it only affects 
the longitudinal diffusivity. The diffusivity in $5.1 was calculated using the boundary 
condition ( c ; ) ~  = 0 at the particle surface. The correction to (5.4~) comes from 
satisfying the continuity of mass flux condition (2 .2d) .  This requires that V(c' ) ,  be 
O(P)intheboundarylayer, whichinturnrequires(4), = O(@).Thus thecontribution 
D t h  from the boundary layer is O(m-l (Dp/Dp)  @#), and is thus small compared with 
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(5.4a). An additional O(m-l(D,/D,) Hg5) correction to ( 5 . 4 ~ )  results from the 
correction to  the concentration disturbance in the particle because (c;) ,  is not 
actually zero, but rather O ( @ )  at the surface. 

I n  the wake downstream from the particle, the concentration decays as 
m-'(Df/DP) Pr-l. The characteristic dimensions of the wake are x / z  x y lz  = O(P-!), 
where x and y are coordinates normal to the bulk flow. If the Stokes velocity field 
is used with this concentration disturbance in the convective flux integral (3.5), the 
integral is not convergent in the wake. As before, the Brinkman velocity field must 
be used, and the resulting integral converges a t  a distance of a screening length 
z = O(g5-!) behind the particle. Thus from the wake we obtain an O(m-'(D,/Dp) Pg54) 
contribution to the longitudinal diffusivity. Thus (5.4) gives the leading effect of the 
particles finite size on the diffusivity in a bed of permeable particles, m-l + 0. 

A 2.3.  Non-mechanical effects in beds of impermeable particles, m-l = 0 
When the particles are impermeable, m-l = 0, the concentration inside the 

particles and the source strength described in §A 2.2 are zero, and the 
O(m-l(Dp/Dp) P"), O(m-l(Df/Dp) Hg5) and O(m-l(D,/D,) @g5) contributions to the 
longitudinal diffusivity described above are absent. There is, however, an O($P In P )  
non-mechanical contribution to the longitudinal diffusivity discussed in 55.2 resulting 
from a source in the boundary layer (cf. (5.8)). I n  $5.2 we argued that this 
contribution could be evaluated by using an approximate concentration disturbance 
( c ' ) ~ , ~ ~ ~ .  Here we shall demonstrate that the contributions to DtBL due to the 
difference between (c'),,  app and the exact concentration disturbance (c'),, BL are 
smaller than the result (5.10) obtained above. ( c ' ) , , ~ ~ ~  is by design identical with 
(c ' ) , ,  BL in the hydrodynamically controlled region outside the boundary layer. Thus 
<c'),, BL- (c'),, app is non-zero only in the O(P-4) volume of the diffusive boundary 
layer, where (c'),, B L -  ( c ' ) , , ~ ~ ~  = O ( @ ) .  The convective-flux integral (3.5), with 
( c ' ) , , ~ ~ - ( c ' ) , ,  app inserted for the concentration, and (u') ,  x - (u),,  is 

-DT;TBL*V<c)O = -%P$ ~ ~ d ~ s ~ n 8 ~ ~ ( ~ ) , [ ( ~ ' ) , , . L - ~ ~ ' ) , , a p p l ,  (A 7)  s 
where Y = y@ = @ ( r -  1 ) .  

As long as (A 7) converges, this correction will be O($P). The solution of the 
boundary-layer equation that satisfies a no-flux boundary condition a(c'),, BL/aY = 0 
at the impermeable surface Y = 0 behaves as 

(c') , , , ,  - @ ( u ) , * V ( C ) ~ [ ~ ' - ~ Y ~ ]  as Y+O, (A 8a) 

where b' is determined from matching with the outer solution. Subtracting (5.9) from 
(A 8), we get the asymptotic behaviours 

(c'>i,BL-(C')l,app - @(u)o'v(c>o (b ' -b )  as ' + O ,  (A 9a) 

(C'>l,BL-(C')l,app @~u)O'v<c)00(y-3)  as (A 9 b )  

Substituting (A 9) into (A 7)  results in a convergent integral, and an O($P) correction 
to  the longitudinal diffusivity that is always small compared with (5.10) or ( 4 . 8 ~ ) .  
There is also an O($@m-lD,/D,) correction to (5.10a) due to the O(@mm-'Df/Dp) 
concentration disturbance inside the particle required to satisfy the equilibrium 
concentration (2.2e) at  the particle surface. 
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